
ULTRA LONG-LIFE AVIONICS ARCHITECTURE

Savio Chau, Abhijit Sengupta, Tuan Tran, Alireza Bakhshi and Tooraj Kia
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, California, USA

ABSTRACT

For survival and achieving reliability in ultra long-
life missions, fault tolerant design techniques need
to handle the predominant failure mode, which is
the wear-out of components. Conventional design
methodologies will need excessive redundancy to
achieve the required reliability. The objective of
this paper is to present a new approach to design a
more efficient fault-tolerant avionics system
architecture that requires significantly fewer
redundant components. This architecture uses
generic h c t i o n blocks that can be programmed,
in-flight, to replace a wide variety of components.
Effectively, each individual generic block is
almost equivalent to an entire redundant string of
components used in conventional approach. As a
result, the ultra long-life system can achieve much
higher level of reliability while carrying far fewer
components. Due to the programmable nature of
generic redundant blocks, the physical location of
a specific component is not pre-determined and
accordingly, wireless interconnection is employed
to provide the necessary flexibility in connectivity.
A testbed of this architecture is being developed at
the Jet Propulsion Laboratory.

INTRODUCTION

After extensive exploration of Solar System,
NASA is close to completion of the initial
reconnaissance, and has started landing and
sample return missions on many planets, satellites,
comets, and asteroids. The next logical step for
space exploration is to expand the frontier to the
far reaches and beyond the solar system with
possible missions to include Pluto and Kuiper Belt
objects sample return or interstellar space
exploration. Such missions will typically last for
about 30 to 50 years. The current technologies and
spacecraft design techniques are inadequate to
support such long life missions. Conventionally,
spacecraft avionics are designed with fault-tolerant

capabilities to tolerate random failures, which are
typically handled by dual or triple redundancy for
a relatively short mission life. In comparison, the
predominant failure mode in an ultra long-life
system is the wear-out of components - active
components in the system are destined to fail
before the end of the mission. Therefore, using
current technologes, an ultra long-life system will
necessarily require a large number of redundant
components. This would be impractical under
conventional fault tolerant systems as the current
techniques are not very efficient when applied to
more than double redundancies.

In addition to deep space exploration, many
terrestrial spacecrafts also require ultra long life
design. One of the major factors in the
maintenance cost of communication satellite
networks is the replacement of failed spacecrafts.
The total cost for manufacturing, testing, and
launch to replace a failed satellite exceeds
hundreds of millions of dollars. In addition, there
are also costs associated with the lost of services
during a down time.

Ultra long-life space systems need breakthrough
technologies in four main areas [l]:
0 long-term survivability - to handle failures due

to random events, design errors, and wear-out
mechanisms ;

0 optimal management (administration) of
consumable resources - to maximize the
acquisition and to minimize the consumption of
consumable resources such as power, fuel, and
the generic blocks;

0 evolvability and adaptability - to have built-in
mechanisms so that the capabilities and
functions of the spacecraft can be upgraded, as
and when needed, after launch; otherwise, the
useful life of the spacecraft will be limited by
the obsolescence of the on-board technology;

0 long-term operation of the spacecraft - to
reduce the operation costs and maintain a
workforce knowledgeable of the spacecraft.

The following discussion will focus on the
architectural aspect of the long-term survivability.

AN AVIONICS ARCHITECTURE FOR ULTRA
LONG LIFE MISSIONS

It is simple to note that current technologies and
spacecraft design techniques are inadequate to
support a long-life mission. In a dual-string
architecture, the system fails when the processors
in both strings have failed. It is impossible to use
the other components in the system, which might
still be functioning correctly, to revive the system.
Consequently, the improvement of system
reliability by the conventional fault tolerance
architecture will diminish in time. This can be
illustrated by reliability modeling as shown in
Figure 1.

100%
80%

2 60% a .- (II 40%

0%

- 2 20%

0 5 10 15 20 25 30 35 40 45 50
Years

I -Dual String (conponent cross-strap) 1 -Single String

Figure 1 : Reliability of Single and Dual String Systems

Since the predominant failure mode in an ultra
long-life system is the wear-out of components,
without an efficient utilization of redundant
components, too many such components are
needed to achieve high reliability.

The NASA Exploration Team has developed a
highly reconfigurable avionics system architecture
that uses redundant resources more efficiently.
This architecture employs Generic Function
Blocks as illustrated in Figure 2. Such a generic
function block can be configured or programmed
in-flight and can replace a wide variety of
functional blocks, once such blocks have been
diagnosed to be faulty. Hence, in some sense, each
individual generic block is almost equivalent to an
entire redundant string of components in the

conventional approach. Accordingly, the ultra
long-life system can achieve much higher level of
reliability while carrying much less redundant
components.

Ti) -'J~J tnterconnections

\\

Figure 2: Avionics System with Generic Function Blocks

A reliability model shown in Figure 3 illustrates
the reliability of the fault-tolerant architecture
using Generic Function Blocks. It compares a
dual-string system, in which each string has 8
components, to an ultra long life avionics
architecture consisted of 16 Generic Function
Blocks, assuming the Mean-Time-Between-Failure
of each component is 125,000 hours (14 years). It
is clear that the Generic Function Block
architecture has much higher reliability than the
dual-string system.

100%

&80%

g 60%
m = 40%
0)

20%

.-

0%
0 5 10 15 20 25 30 35 40 45 50

Years - Dual String (component cross-strap)
-Generic Function Block

Figure 3: Reliability of Dual Sting and Generic
Function Block Systems

Providing connectivity between the generic blocks
and the functional blocks they replace is a difficult
implementation problem as it is impossible to
determine the required connectivity before launch.
Since a Generic Function Block has the capability
to replace several of the components, regardless of
their relative physical locations, the connectivity
among the components needs to be flexible. This

may result in different configurations after fault
recovery. Though a crossbar type conventional
switched network connection might be used, the
complexity of such a network can grow very
rapidly with the number of functional blocks in the
system.

The approach taken in this research is to use
wireless interconnection to replace the switched
network (see Figure 2). Using a broadcasting
wireless network, the connectivity can be simply
achieved as long as the distance between two
blocks is within the broadcast range. This usually
is true for avionics systems as all the components
are confined in small space in most cases.

FAULT DIAGNOSIS IN THE
ULTRA LONG LIFE AVIONICS SYSTEMS

Since the components in the Generic Function
Block architecture are not duplicated, it is more
difficult to use duplicate-and-compare or voting to
detect failures. For some failure modes such as
data corruptions, error detection and correction
codes are still applicable. On the other hand,
function block level failure modes such as crash
cannot be detected as directly as the duplicate-and-
compare method. The conventional method to
solve the problem is to use watchdog timers.
However, the detection latency of a watchdog
timer is unacceptable in many applications.

The approach this research has taken is to use the
autonomous testing methods [2-41. Autonomous
testing is a distributed fault detection technique, in
which each component in the system is tested by
several other components and the identity of failed
components are derived from the test results. As
an example, a Generic Function Block architecture
with three function blocks, as shown in Figure 4,
might be considered. Periodically, each function
block in Figure 4 tests itself and is tested by
another block as shown by arrows (the arrows
imply the block C tests the block A, the block A
tests the block B and so on). The tests are assumed
to be comprehensive enough to detect fault in the
tested block. If the testing block is fault-free then
it is capable of detecting the fault in the tested
block, if any. If, however, the testing block is itself
faulty then its testing is unreliable and the test
result might not reflect the true status of the tested

block. For example, if the block B is faulty, it
might find and hence report an incorrect test result
that the block C is faulty even when the block C is
actually fault-free.

Each block maintains an opinion register where it
records its opinion, fault-free or faulty, about all
the blocks. This opinion might be formed either by
direct testing or from the opinion of other blocks.
First, each node will perform a self-test. In a fault
free situation, each block should pass the self-test.
This is shown in Figure 4, where a ‘G ’ in a cell of
the opinion register of a block x indicates that the
block identified by the cell is fault-free (or
“good”) in the opinion of the block x. In a fault-
free situation, since each block should pass the
self-test, in each block, the opinion register should
have a ‘G’ in the cell identifying itself (the
contents of other cells are explained later).

Test Test

Test

Figure 4: Autonomous Testing System Example

Second, in the test phase, each block is tested by
its testers (for the example in Figure 4, each block
is tested by another block). For this example, the
block A tests the block B, the block B tests the
block C, and the block C tests the block A. If
there is no fault, each block should also pass each
test. This is indicated in Figure 4 where each cell
has a ‘G’ in the opinion register identified by the
block it has tested.

Third, in the diagnosis phase, each block x forms
its opinion about the health status of any other
functional block y either from the result of testing,
if x tested y, or from the opinion of some other
block z such that z is healthy in x’s opinion.
Hence, for the system in Figure 4, even though the

block A has not tested the block C, but by the
opinion of the block B (whom the block A finds
healthy), the block A finds that the block C is also
healthy and uses this information to update its
opinion register.

A general model of diagnosis by autonomous
testing is represented by a directed graph where
each node represents a functional block and each
directed edge represents the testing of one block
by another. An example is shown in the Figure 5
where each bi, i = O,l, ..., 6 represents a functional
block and an edge (bi, bj) from bi to bj represents
the testing of the block bj by the block bi. The
result ry of testing of the block bj by the block bi
identifies if bj passes the test from bi. If it does
then, in hi's opinion, bj is fault-free otherwise it is
faulty. As mentioned earlier, the considered
diagnosis model assumes that the opinion of a
fault-free block is correct whereas the opinion of a
faulty block is unreliable. It is simple to see that to
diagnose the faulty blocks correctly, it is necessary
that each block must be tested by at least t other
blocks, where t is the largest number of blocks that
can fail simultaneously. It has been shown [2] that
if the testing between the blocks is arranged as
shown in Figure 5 , then the faulty blocks can be
correctly identified so long as the number of faulty
blocks do not exceed two, even though the
opinions of the faulty blocks are unreliable.

Figure 5: Autonomous Testing Model

Identifying the faulty blocks from the test results
can be carried out in a distributed manner as
follows. As mentioned earlier, each functional
block maintains an opinion register. When a block
bi tests a block bj and finds it fault-free, bi also gets
the content of the opinion register of the tested
block bj and updates its opinion using the obtained
opinion from bj. On the other hand, if the tested

block is found faulty then its opinion register is
ignored. It has been shown that such an algorithm,
when executed in a distributed manner by all the
blocks, results in a correct and consistent
identification of faulty blocks by all the fault-free
blocks when the testing scheme is as shown in
Figure 5 . A formal definition of the testing scheme
depicted by the Figure 5 is as follows:
0 If n is the total number of functional blocks and t

is the largest number of blocks that can fail
simultaneously then we must have n 2 2t+l
Each block bj is tested by a block bi if and only
i f j = i+ x (mod n) for 1 5 x I t .

From this definition, it follows that with additional
testing capabilities added to the system in Figure
5, through autonomous testing, up to three faulty
functional blocks can be diagnosed.

Test

Test

Test

Figure 6: Autonomous Testing System Example
with a faulty functional block

The example of Figure 4 is a special case of the
above testing capabilities with n = 3 and t = 1.
Consider the case when the functional block B has
failed as illustrated in Figure 5 . In the test phase,
the block A detects the block B’s failure and the
block C finds out that the block A is healthy. In
the diagnosis phase, the block C gets the content
of opinion register of the block A and updates its
opinion register to infer that the block B has failed.
On the other hand, the block A finds the block B
faulty and ignores the content of its opinion
register. Since it is assumed that there is only one
faulty functional block and the block A already
knows that the block B has failed, therefore the
block A can deduce that the block C is healthy.
Both the blocks A and C reach a consistent
diagnosis that the block B has failed, so that the

block B will be ignored in subsequent operations.
A more general study of the autonomous testing
can be found in [2-41.

The inclusion of autonomous test capability needs
additional hardware and software features to be
included in each functional block and increases the
cost of each functional block. For every pair of
blocks (bi, bj), let h, denote the cost to implement
in bi the capability of testing bj. If bi cannot test bj
then hi = 00. Let Lj be the set of blocks that can test
bj. Given n functional blocks, in order to diagnose
correctly t faulty blocks, at least t of the h, s must
be finite and lLjl 2 t for allj. Assuming the testing
features as given by the Figure 5 , we need to find a
permutationfon the set {0,1,2, ..., n-1}, such that a
functional block bi occupies the positionfli) and
the total cost of implementing the testing
capability given by

n-1 c c h,
i=O i &Lj .

ffi)=f(i))+x (mod n)
I_cx_ct

is minimum.

ULTRA LONG LIFE AVIONICS
ARCHITECTURE PROTOTYPE

A prototype of the ultra long life avionics
architecture is being developed at the Jet
Propulsion Laboratory. This prototype is intended
to demonstrate the three key aspects of the
architecture: (1) the feasibility of fault recovery
with generic function blocks, (2) the feasibility of
system reconfiguration with wireless
interconnections, and (3) fault diagnosis with
distributed autonomous detection.

The “system” that this prototype implements is a
navigator that has a gyroscope, star tracker, and
accelerometer. Each of the sensors has its own
controller, which collect data from the sensor and
send it to a local controller for processing. The
conceptual design of the prototype is shown in
Figure 7.

A Generic Function Block implements each
sensor’s controller in the prototype. Also an 8051
micro-controller is implemented within the FPGA.

Gyro data

,zj
Generic Function \,Generic Function!

Block ‘\ Block
\ \. I

I

I
I
I

Star tracker,,’ \ I

i data

Generic Function Block

Figure 7: Navigator implemented by Generic
Function Block

The Generic Function Block contains an FPGA
with 600 thousand gates, a wireless
interconnection interface, a 64 Kbytes of program
memory, and other supporting circuits and
displays.

Figure 8: Generic Function Block Implementation

The wireless interconnection is a commercial
proprietary protocol, similar to IEEE 802.1 lb
standard [5]. An implementation of the Generic
Function Block is shown in the Figure 8.

There are three types of software running on the
Generic Function Block navigation sensor
interface function, autonomous testing, and fault
recovery and reconfiguration. Each Generic
Function Block has the software for all sensor
interface controllers but is assigned to run only
one type of sensor control software at the system
initialization. The autonomous testing software

executes the testing and the diagnosis. The testing
performed is a simple reading of a watchdog timer
from the Generic Function Block under test. The
Generic Function Block can deduce which block
has failed by examining the testing results as
described in last section. When a block fails, its
function will be assigned to one of the testers of
the block. Since every block is tested by at least t
other functional blocks, at least one of the testers
is guaranteed to be fault-free. In case more than
one testers is fault-free, the software for fault
recovery and reconfiguration uses a static protocol
to determine the functional block to take over.

Due to resource limitations few simplifications are
needed to enable the implementation of the
prototype in a timely manner. First, since there
are no available sensors equipped with the
wireless interface, a host computer is used to
simulate these sensors. The host computer sends
the sensor data to the corresponding interface
controller by broadcasting the data along with the
sensor name (in form of an address). Only the
Generic Function Block that has the correct sensor
controller will accept and respond to command
and data.

Another simplification in this implementation was
to use the host computer as a pass-through channel
and arbitrator for the communications among the
Generic Function Blocks. In other words, when a
Generic Function Block sends a message to
another block, it first sends the message to the host
computer, which then re-broadcasts the message
so that the function block with the correct
destination address will receive and respond to the
message. The host computer also sets up the
Generic Function Blocks such that no more than
one block will send message at any time. This
simplification alleviates the prototype from
worrying about the details of the arbitration
protocol, so that more effort can be focused on the
design of the fault recovery and system
reconfigurations. However, this simplification
will be removed from future prototypes.

The full testbed with all Generic Function Blocks
and the host computer is shown in Figure 8. The
system integration and test are still underway.
When the prototype is competed, the fault
recovery with Generic Function Blocks can be

demonstrated by injecting a fault into one of the
blocks (e.g., tuming off the power). Then, it is
expected that the failure will be detected by the
autonomous testing and the task on the failed
block will be assumed by its upstream neighbor.

Figure 9: Ultra Long Life Avionics Architecture Testbed

EXPERIMENT OF HARDWARE
RECONFIGURATION WITHIN A GENERIC

FUNCTION BLOCK

In the prototype, the system reconfiguration and
reallocation of bc t ions from one block to another
is basically achieved by software. This is possible
in the prototype because all the sensor interface
controllers have very similar designs. However, in
a more general case, blank Generic Function
Blocks have to be programmed to replace a failed
function block. In that case, hardware
reconfiguration will be necessary.

The Ultra Long Life Avionics research team at the
Jet Propulsion Laboratory has also conducted an
experiment to reconfigure Generic Function Block
through wireless inter-connection. A circuit board
was constructed for this experiment as shown in
Figure 10. This circuit board also contains an
FPGA and a number of YO interfaces. One of the
I/O interface, a parallel port, is modified so that it
can accept the configuration for the FPGA fi-om a
computer through wireless interconnection. The
testbed for the hardware reconfiguration
experiment is shown in Figure 1 1 .

The FPGA contains three simple interface circuits:
an LED interface, an LCD interface, and a switch
interface. In addition, it also dedicates an area of
the FPGA as “spare logic” that can be

reprogrammed to replace either the LED or the
Switch Interface. The circuit board also includes
two sets of switches for fault injection into the
LED and Switch Interface circuits. These two
interface circuits detect the injected faults by
monitoring the positions of these switches. The
design of the circuit board and FPGA is depicted
in Figure 11.

Figure 10: Hardware Reconfiguration
Demonstration Circuit Board Design

Figure 1 1 : Hardware Reconfiguration
Demonstration Testbed

In this experiment, the configuration of the FPGA
was first downloaded fiom the computer to the
chip through the wireless interconnection. In
normal operation, the System Switches (Figure 12)
could be set such that the LED interface could turn
on an array of LEDs in different patterns. When a
fault was injected into the LED interface, the
LEDs would not be turned on properly and an
error status signal was sent back to the computer
through the wireless interface. Upon receiving the
error status, the computer downloaded a new

configuration file to the FPGA, again through the
wireless interface, so that the spare logic was used
to replace the LED interface. Similarly, when a
fault was injected to the Switch Interface (Figure
l l) , the System Switches would not function
properly and an error status was sent to the
computer. Consequently, a new configuration file
was downloaded to the FPGA, so that the spare
logic was used to replace the Switch Interface.
This experiment was demonstrated successfully in
the testbed.

I FPGA Interface

r

LED Switch . -+ + Interface Interface - -
Spare 4
Logic

~

I

Fault
injection
switches

Fault
injection
switches

LEDs System Switches

Figure 12: FPGA Design for Hardware
Reconfiguration Demonstration

This hardware reconfiguration capability will be
incorporated in future Ultra Long Life Avionics
experiments.

CONCLUSION

This paper has explored some unconventional
architecture design techniques that utilize much
less redundant components for sustaining very
long duration missions. An architecture based on
the concept of Generic Function Blocks has been
developed. A prototype of this architecture
representing a navigator subsystem is being
constructed at the Jet Propulsion Laboratory. This
prototype can detect failures in any one of the
Generic Function Blocb by means of

Autonomous Testing through wireless
communication among the blocks. Once the failed
block is identified, software technique is employed
to relocate the tasks of the failed block to a healthy
block.

An independent experiment of reconfigunng the
hardware design of an FPGA through wireless
interconnection has also been conducted. The
experiment was conducted successfully and the
technique will be incorporated into future system
reconfiguratiodrecovery experiments.

FUTURE WORK

Many issues of this ultra long life avionics
architecture have not bee addressed by the
experiments mentioned above. Examples of these
issues are:

1. The wireless interface in this prototype has to
handle only a few function blocks, and the
arbitration problem is simplified by the host
computer. In the next step, a more
sophisticated wireless protocol should be
developed so that large number of Generic
Function Blocks should be able to communicate
directly with each other simultaneously.

2. A more realistic testbed need to be constructed,
in which all sensors have wireless interface and
can communicate with any Generic Function
Blocks directly.

3. A "self-repair" capability should be developed
in each Generic Function Block, so that a failed
block can be salvaged and reused.

4. The wireless interface among the Generic
Function Blocks might interfere with the
telecommunication system or other on-board
electronics. The effect of the wireless interface
need to be investigated and design techniques
should be developed to minimize such
interference.

5. Traditional verification techniques such as
accelerated life test might be too expensive or
taking too long to verify the reliability and
lifetime of the Ultra Long Life Avionics
architecture. New verification techniques have
to be developed for systems that are ultra long
life.

ACKNOWLEDGEMENT

The research described in this paper was carried
out by the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

REFERENCES

[l] S. Chau and J. Blosiu, "Ultra Long Life
System Concept, Rev 1 ," Internal Document,
Jet Propulsion Laboratory, Feb 16,200 1.

21 A. Sengupta and C. Rhee, "Different classes of
diagnosable systems: relationship and
common diagnosis algorithm", IEEE Trans.
Circuits and Systems, vol. 38, pp. 642-645,
June, 1991.

31 A. Sengupta and A. Sen, "On the
diagnosability problem for a general model of
diagnosable systems", Information Science,

[4] A. Sengupta and C. Rhee, "On a
generalization of self-implicating structures in
diagnosable systems", IEEE Trans. Circuits
and Systems, vol. 40, no. 4, pp. 239-245,
April, 1993.

[5] IEEE std 802.1 1b-1999, "Part 11: Wireless
LAN Medium Access Control (MAC) and
Physical Layer (PHY) specifications: Higher-
Speed Physical Layer Extension in the 2.4
GHz Band

V O ~ . 42, pp. 83-94, 1987.

